Ещё проще

-A A +A
Немного о нефти

Сырая нефть является термином, который употребляют для обозначения необработанной нефти - сырья, которое выходит из-под земли как есть. Таким образом, сырая нефть является ископаемым топливом, а это означает, что она произведена естественным природным путём из разлагающихся растений и животных, обитающих в древних морях миллионы лет назад - большинство мест, где чаще всего находят нефть, когда-то были дном морей. Сырая нефть в зависимости от месторождения бывает разной и изменяется в цвете и консистенции: от ярко-чёрной (мокрый асфальт) и очень вязкой, до немного прозрачной и почти твёрдой.

Главная ценность и польза нефти заключается в том, что она является отправной точкой для очень многих различных веществ, так как она содержит углеводороды. Углеводороды - это молекулы, которые, очевидно, содержат водород и углерод, и отличаются друг от друга лишь тем, что могут быть различной длины и структуры - от прямых цепочек до разветвлённых цепей с кольцами.

Существуют две вещи, которые делают углеводороды интересными для химиков:

  1. Углеводороды содержат много потенциальной энергии. Многое из того, что получено из сырой нефти, как то: бензин, дизельное топливо, парафин и т.д. - ценно именно этой потенциальной энергией.
  2. Углеводороды могут принимать множество различных форм. Наименьшим углеводородом (по чилу атомов) является метан (СН4), который представляет собой газ, который легче воздуха. Более длинные цепочки с 5 или более атомами углерода являются в подавляющем большинстве случаев жидкостями. А уж очень длинные цепочки - твердые, например, воск или смола. По химической структуре "сшивания" углеводородных цепей Вы сможете получить все: от синтетического каучука до нейлона и пластика. Углеводородные цепочки на самом деле очень универсальны!

Основные классы углеводородов в сырой нефти включают в себя:

  • Парафины с общей формулой CnH2n+2 (n представляет собой целое число, обычно от 1 до 20) с прямой структурой или разветвленной цепью могут представлять газы или жидкости, которые кипят уже при комнатной температуре в зависимости от примеров молекул: метан, этан, пропан, бутан, изобутан, пентан, гексан.
  • Ароматики с общей формулой: C6H5-Y (Y представляет собой большую прямую молекулу, которая соединяется с бензольным кольцом) - это кольчатые структуры с одним или более кольцами, которые содержат шесть атомов углерода, с чередованием двойных простых связей между атомами углерода. Яркие примеры ароматиков: бензол и нафталин.
  • Нафтены или циклоалканы с общей формулой CnH2n (n является целым числом, как правило, от 1 до 20) - это кольчатые структуры с одним или несколькими кольцами, которые содержат только простые связи между атомами углерода. Это, как правило, жидкости: циклогексан, метилциклопентан и другие.
  • Алкены с общей формулой CnH2n (n представляет собой целое число, обычно от 1 до 20) - это линейные или разветвлённые цепные молекулы, содержащие одну углерод-углеродную двойную связь, которые могут быть жидкостью или газом, например: этилен, бутен, изобутен.
  • Алкины с общей формулой: CnH2n-2 (n представляет собой целое число, обычно от 1 до 20) - это линейные или разветвлённые цепные молекулы, содержащие две углерод-углеродные двойные связи, которые могут быть жидкостью или газом, например: ацетилен, бутадиены.

Теперь, зная структуру нефти, давайте посмотрим, что мы можем с ней сделать.

Как работает нефтепереработка?

Процесс переработки нефти начинается с дробной ректификационной колонны.

Типичный нефтеперерабатывающий завод

Главная проблема с сырой нефтью заключается в том, что она содержит сотни различных типов углеводородов, смешанные все вместе. И наша задача заключается в том, чтобы отделить различные виды углеводородов, чтобы получить что-нибудь полезное. К счастью, есть простой способ отделить эти вещи, и это то, что нефтепереработка и делает.

Различные длины углеводородной цепи имеют прогрессивно более высокие точки кипения, так что они могут быть разделены простой перегонкой с различными температурами. Проще говоря, нагревая нефть до какой-либо температуры, начинают закипать определённые цепочки углеводородов, и, таким образом, мы можем отделять "зёрна от плевел". Это то, что происходит на нефтеперерабатывающем заводе - в одной части процесса нефть нагревают, и различные цепи выкипают при соответствующих температурах кипения. Каждая отличающаяся длина цепи имеет своё уникальное свойство, что делает её полезной по-своему.

Чтобы понять разнообразие, содержащееся в сырой нефти, и понять, почему переработка сырой нефти настолько важна в нашей цивилизации, посмотрите на следующий список продуктов, которые получаются из сырой нефти:

Нефтяные газы - используются для отопления, приготовления пищи, изготовления пластмасс:

  • это небольшие алканы (от 1 до 4 атомов углерода)
  • широко известны по таким названиям как метан, этан, пропан, бутан
  • диапазон кипения - менее 40 градусов по Цельсию
  • часто сжижаемые под давлением газы

Нафта или лигроин - промежуточный продукт, который будет дополнительно обработан, чтобы впоследствии стать бензином:

  • содержит от 5 до 9 атомов алканов углерода
  • диапазон кипения - от 60 до 100 градусов по Цельсию

Бензин - моторное топливо:

  • всегда жидкий продукт
  • представляет собой смесь алканов и циклоалканов (от 5 до 12 атомов углерода)
  • диапазон кипения - от 40 до 205 градусов по Цельсию

Керосин - топливо для реактивных двигателей и тракторов; исходный материал для изготовления других продуктов:

  • жидкость
  • смесь алканов (от 10 до 18 атомов углерода) и ароматических углеводородов
  • диапазон кипения - от 175 до 325 градусов по Цельсию

Дизельный дистиллят - используется для дизельного топлива и мазута; исходный материал для изготовления других продуктов:

  • жидкость
  • алканы, содержащие 12 или более атомов углерода
  • диапазон кипения - от 250 до 350 градусов по Цельсию

Смазочные масла - используются для изготовления моторного масла, жира, других смазочных материалов:

  • жидкость
  • длинноцепочечные структуры (от 20 до 50 углеродных атомов) алканы, циклоалканы, ароматики
  • диапазон кипения - от 300 до 370 градусов по Цельсию

Мазут - используется для промышленного топлива; исходный материал для изготовления других продуктов:

  • жидкость
  • длинноцепочечные структуры (от 20 до 70 углеродных атомов) алканы, циклоалканы, ароматики
  • диапазон кипения - 370 до 600 градусов по Цельсию

Остатки продуктов переработки - кокс, асфальт, гудрон, парафины; исходный материал для изготовления других продуктов:

  • твердые частицы
  • множественные кольцевые соединения с 70 или более атомами углерода
  • диапазон кипения не менее 600 градусов по Цельсию.

Вы, возможно, заметили, что все эти продукты имеют различные размеры и диапазоны кипения. Химики воспользовались этими свойствами для нефтепереработки. Давайте теперь далее узнаем детали этого увлекательного процесса!

Подробный процесс переработки нефти

Как упоминалось ранее, баррель сырой нефти имеет смесь всевозможных углеводородов в себе. Нефтепереработка отделяет от всей этой "компании разнорасовых представителей" полезные вещества. При этом, происходят следующие группы производственные химические процессы, которые, в принципе, есть на каждой нефтеперерабатывающей фабрике:

  • Самый старый и самый распространённый способ отделить от нефти различные компоненты (их называют фракции) - это сделать это, используя различия в температуре кипения. Этот процесс называется фракционной перегонкой.
  • Новые методы использования химической обработки в некоторых из фракций используют метод преобразования. Химическая обработка, например, может нарушить длинные цепочки на более короткие. Это позволяет нефтеперерабатывающему заводу превратить дизельное топливо в бензин в зависимости, например, от спроса.
  • Нефтеперерабатывающие заводы, кроме того, после процесса фракционной перегонки должны очищать фракции в целях удаления из них примесей.
  • Нефтеперерабатывающие заводы объединяют различные фракции (обработанные и необработанные) в смеси, чтобы сделать нужные продукты. Например, различные смеси из различных цепочек могут создать бензины с различным октановым числом.

Продукты переработки нефти отправляются на недолгое хранение в специальные резервуары, пока они не будут доставлены на различные рынки: АЗС, аэропорты и ​​на химические предприятия. В дополнение к созданию продуктов на масляной основе, заводы должны также позаботиться об отходах, появление которых неизбежно, чтобы минимизировать загрязнение воздуха и воды.

Фракционная перегонка

Различные компоненты нефти имеют различные размеры, вес и температуры кипения; так, первый шаг заключается в разделении этих компонентов. Поскольку они имеют различные температуры кипения, они могут быть разделены легко с помощью процесса, называемого фракционной перегонкой.

Этапы фракционной перегонки следующие:

  • Вы нагреваете смесь двух или более веществ (жидкостей) с различными температурами кипения до высокой температуры. Нагревание обычно делается с помощью пара под высоким давлением до температуры около 600 градусов по Цельсию.
  • Смесь кипит, образуя пар (газы); большинство веществ проходят в паровой фазе.
  • Пар поступает в нижнюю часть длинной колонны, которая заполнена лотками или тарелками. Лотки имеют много отверстий или пузырчатые колпачки (аналогично продырявленной крышке на пластиковой бутылке) в них, чтобы позволить пару пройти сквозь них. Они увеличивают время контакта между паром и жидкостью в колонне и помогают сбору жидкостей, которые образуются на различных высотах в колонке. Существует разница температур в этой колонне (очень горячая внизу и холоднее к верхней части).
  • Таким образом, пар поднимается в колонне.
  • При повышении паров через тарелки в колонне, он охлаждается.
  • Когда парообразное вещество достигает высоты, где температура в колонке равна температуре кипения этого вещества, оно будет конденсироваться с образованием жидкости. При этом, вещества с самой низкой температурой кипения будет конденсироваться в самой высокой точке в колонне, а вещества с более высокими температурами кипения будут конденсироваться ниже в колонне.
  • Лотки собирают различные жидкие фракции.
  • Собранные жидкие фракции могут перейти к конденсаторам, которые охлаждают их дальше, а потом идут в резервуары для хранения, либо же они могут отправиться в другие районы для дальнейшей химической переработки

Фракционная перегонка полезна для разделения смеси веществ с узкими различиями в температурах кипения и является наиболее важным шагом в процессе переработки нефти. Процесс переработки нефти начинается с дробной ректификационной колонны. Очень немногие из компонентов выйдут из колонны фракционной перегонки, готовые к продаже на рынке нефтепродуктов. Многие из них должны быть химически обработаны, чтобы быть преобразованными в другие фракции. Например, только 40% дистиллированной сырой нефти станет бензином, однако, бензин является одним из основных продуктов, производимых нефтяными компаниями. Вместо того, чтобы постоянно дистиллировать в больших количествах сырую нефть, нефтяные компании химически обрабатывают другие фракции из ректификационной колонны, чтобы получить тот же бензин; и эта обработка увеличивает выход бензина из каждого барреля сырой нефти.

Химическое преобразование

Вы можете преобразовать одну фракцию в другую с помощью одного из трёх методов:

  1. Разбить большие углеводороды на более мелкие (крекинг)
  2. Объединить мелкие углеводороды, чтобы сделать из них более крупные (унификация)
  3. Переставлять или замещать различные части углеводородов, чтобы получить нужные углеводороды (гидротермальное изменение)

Крекинг

Крекинг принимает большие углеводороды и ломает их на более мелкие. Есть несколько типов крекинга:

  • Тепловой - Вы нагреваете большие углеводороды при высоких температурах (иногда ещё и при высоких давлениях), пока они не распадутся.
  • Паровой - высокая температура пара (более 800 градусов по Цельсию) используется для разрыва этана, бутана и лигроина в этилен и бензол, которые используются для производства химических веществ.
  • Висбрекинг - остаточные вещества из дистилляционной колонны нагревают почти до 500 градусов по Цельсию, охлаждают и быстро сжигают в дистилляционной колонне. Этот процесс снижает вязкость веществ и число тяжёлых масел в них и производит смолы.
  • Коксование - остаточные вещества из дистилляционной колонны нагревают до температуры выше 450 градусов по Цельсию, в результате чего тяжёлый почти чистый углерод остаётся (кокс); кокс очищается от коксования и продаётся.
  • Катализация - используется катализатор для ускорения реакции крекинга. Катализаторы включают цеолит, гидросиликат алюминия, бокситы и алюмосиликат. Каталитический крекинг - это  когда горячая жидкость катализатора (538 градусов по Цельсию) расщепляет тяжёлое вещество в дизельные масла и бензин.
  • Гидрокрекинг - подобен каталитическому крекингу, но использует другой катализатор с более низкими температурами, высоким давлением и водородом. Это позволяет расщепить тяжёлую нефть в бензин и керосин (авиатопливо).

Унификация

Иногда Вам нужно объединить мелкие углеводороды, чтобы получить из них более крупные - этот процесс называется унификацией. Основным процессом объединения является при этом каталитический риформинг и в этом случае используется катализатор (смесь из платины и платины-рения), чтобы объединить низкий вес нафты в ароматические соединения, которые используются в создании химических веществ и при смешивании бензина. Значительным побочным продуктом этой реакции является газообразный водород, который затем либо используется для гидрокрекинга, либо попросту продаётся.

Гидротермальное изменение

Иногда структуры молекул в одной фракции переставляются, чтобы произвести другую. Как правило, это делается с помощью процесса, называемого алкилированием. В алкилировании низкомолекулярные соединения, такие как пропилен и бутилен, смешивают в присутствии катализатора, такого как фтористо-водородная кислота или серная кислота (побочный продукт от удаления примесей из многих нефтепродуктов). Продуктами алкилирования являются высокооктановые углеводороды, которые используются в бензиновых смесях для повышения октанового числа.

Конечная обработка (очистка) нефтепродуктов

Дистиллированные и химически обработанные фракции нефти снова обрабатывают, чтобы удалить примеси - с основном, органические соединения, содержащие серу, азот, кислород, воду, растворённые металлы и неорганические соли. Конечную обработку, как правило, делают следующими путями:

  • Колонна серной кислоты удаляет ненасыщенные углеводороды (с двойными углерод-углеродными-облигациями), соединения азота, кислорода и остаточные твёрдые вещества (смолы, асфальт).
  • Абсорбционная колонна заполнена осушителем, чтобы удалить воду.
  • Сероводородные скрубберы удаляют серу и все соединения серы.

После того, как фракции будут обработаны, их охлаждают и затем смешивают вместе, чтобы сделать различные продукты, такие как:

  • Бензин различных марок, с добавками или без добавок.
  • Смазочные масла различных марок и типов (например, 10W-40, 5W-30).
  • Керосин различных марок.
  • Реактивное топливо.
  • Дизельное топливо.
  • Мазут.
  • Другие химические вещества различных марок для изготовления пластмасс и других полимеров.

Как работает нефтепереработка? Видео 

Добавить комментарий

Вы выделили текст, содержащий ошибки:
Пожалуйста, напишите, как нам необходимо исправить выделенный Вами текст. Затем просто нажмите кнопку "Автор - двоечник".